International Association for Cryptologic Research

International Association
for Cryptologic Research


Eduard Hauck


Analysing the HPKE Standard 📺
The Hybrid Public Key Encryption (HPKE) scheme is an emerging standard currently under consideration by the Crypto Forum Research Group (CFRG) of the IETF as a candidate for formal approval. Of the four modes of HPKE, we analyse the authenticated mode HPKE_Auth in its single-shot encryption form as it contains what is, arguably, the most novel part of HPKE. HPKE_Auth’s intended application domain is captured by a new primitive which we call Authenticated Public Key Encryption (APKE). We provide syntax and security definitions for APKE schemes, as well as for the related Authenticated Key Encapsulation Mechanisms (AKEMs). We prove security of the AKEM scheme DH-AKEM underlying HPKE Auth based on the Gap Diffie-Hellman assumption and provide general AKEM/DEM composition theorems with which to argue about HPKE_Auth’s security. To this end, we also formally analyse HPKE_Auth’s key schedule and key derivation functions. To increase confidence in our results we use the automatic theorem proving tool CryptoVerif. All our bounds are quantitative and we discuss their practical implications for HPKE_Auth. As an independent contribution we propose the new framework of nominal groups that allows us to capture abstract syntactical and security properties of practical elliptic curves, including the Curve25519 and Curve448 based groups (which do not constitute cyclic groups).
Lattice-Based Blind Signatures, Revisited 📺
We observe that all previously known lattice-based blind signatures schemes contain subtle flaws in their security proofs (e.g.,~Rückert, ASIACRYPT '08) or can be attacked (e.g., BLAZE by Alkadri et al., FC~'20). Motivated by this, we revisit the problem of constructing blind signatures from standard lattice assumptions. We propose a new three-round lattice-based blind signature scheme whose security can be proved, in the random oracle model, from the standard SIS assumption. Our starting point is a modified version of the insecure three-round BLAZE scheme, which itself is based Lyubashevsky's three-round identification scheme combined with a new aborting technique to reduce the correctness error. Our proof builds upon and extends the recent modular framework for blind signatures of Hauck, Kiltz, and Loss (EUROCRYPT~'19). It also introduces several new techniques to overcome the additional challenges posed by the correctness error which is inherent to all lattice-based constructions. While our construction is mostly of theoretical interest, we believe it to be an important stepping stone for future works in this area.
A Modular Treatment of Blind Signatures from Identification Schemes 📺
Eduard Hauck Eike Kiltz Julian Loss
We propose a modular security treatment of blind signatures derived from linear identification schemes in the random oracle model. To this end, we present a general framework that captures several well known schemes from the literature and allows to prove their security. Our modular security reduction introduces a new security notion for identification schemes called One-More-Man In the Middle Security which we show equivalent to the classical One-More-Unforgeability notion for blind signatures.We also propose a generalized version of the Forking Lemma due to Bellare and Neven (CCS 2006) and show how it can be used to greatly improve the understandability of the classical security proofs for blind signatures schemes by Pointcheval and Stern (Journal of Cryptology 2000).