International Association for Cryptologic Research

International Association
for Cryptologic Research


Mahimna Kelkar


MPC-Friendly Symmetric Cryptography from Alternating Moduli: Candidates, Protocols, and Applications 📺
We study new candidates for symmetric cryptographic primitives that leverage alternation between linear functions over $\mathbb{Z}_2$ and $\mathbb{Z}_3$ to support fast protocols for secure multiparty computation (MPC). This continues the study of weak pseudorandom functions of this kind initiated by Boneh et al. (TCC 2018) and Cheon et al. (PKC 2021). We make the following contributions. (Candidates). We propose new designs of symmetric primitives based on alternating moduli. These include candidate one-way functions, pseudorandom generators, and weak pseudorandom functions. We propose concrete parameters based on cryptanalysis. (Protocols). We provide a unified approach for securely evaluating modulus-alternating primitives in different MPC models. For the original candidate of Boneh et al., our protocols obtain at least 2x improvement in all performance measures. We report efficiency benchmarks of an optimized implementation. (Applications). We showcase the usefulness of our candidates for a variety of applications. This includes short ``Picnic-style'' signature schemes, as well as protocols for oblivious pseudorandom functions, hierarchical key derivation, and distributed key generation for function secret sharing.
Order-Fairness for Byzantine Consensus 📺
Decades of research in both cryptography and distributed systems has extensively studied the problem of state machine replication, also known as Byzantine consensus. A consensus protocol must usually satisfy two properties: {\em consistency} and {\em liveness}. These properties ensure that honest participating nodes agree on the same log and dictate when fresh transactions get added. They fail, however, to ensure against adversarial manipulation of the actual {\em ordering} of transactions in the log. Indeed, in leader-based protocols (almost all protocols used today), malicious leaders can directly choose the final transaction ordering. To rectify this problem, we propose a third consensus property: {\em transaction order-fairness}. We initiate the first formal investigation of order-fairness and explain its fundamental importance. We also provide several natural definitions for order-fairness and analyze the assumptions necessary to realize them. We also propose a new class of consensus protocols called Aequitas. Aequitas protocols are the first to achieve order-fairness in addition to consistency and liveness. They can be realized in a black-box way using existing broadcast and agreement primitives (or indeed using any consensus protocol), and work in both synchronous and asynchronous network models.