## CryptoDB

### Chenzhi Zhu

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

Short Pairing-Free Blind Signatures with Exponential Security
Abstract

This paper proposes the first practical pairing-free three-move blind signature schemes that (1) are concurrently secure, (2) produce short signatures (i.e., {\em three} or {\em four} group elements/scalars), and (3) are provably secure either in the generic group model (GGM) or the algebraic group model (AGM) under the (plain or one-more) discrete logarithm assumption (beyond additionally assuming random oracles). We also propose a partially blind version of one of our schemes.
Our schemes do not rely on the hardness of the ROS problem (which can be broken in polynomial time) or of the mROS problem (which admits sub-exponential attacks). The only prior work with these properties is Abe's signature scheme (EUROCRYPT '02), which was recently proved to be secure in the AGM by Kastner et al. (PKC '22), but which also produces signatures twice as long as those from our scheme.
The core of our proofs of security is a new problem, called {\em weighted} {\em fractional} ROS (WFROS), for which we prove (unconditional) exponential lower bounds.

2021

EUROCRYPT

Multi-Source Non-Malleable Extractors and Applications
📺
Abstract

We introduce a natural generalization of two-source non-malleable extractors (Cheragachi and Guruswami, TCC 2014) called as \textit{multi-source non-malleable extractors}. Multi-source non-malleable extractors are special independent source extractors which satisfy an additional non-malleability property. This property requires that the output of the extractor remains close to uniform even conditioned on its output generated by tampering {\it several sources together}. We formally define this primitive, give a construction that is secure against a wide class of tampering functions, and provide applications. More specifically, we obtain the following results:
\begin{itemize}
\item For any $s \geq 2$, we give an explicit construction of a $s$-source non-malleable extractor for min-entropy $\Omega(n)$ and error $2^{-n^{\Omega(1)}}$ in the {\it overlapping joint tampering model}. This means that each tampered source could depend on any strict subset of all the sources and the sets corresponding to each tampered source could be overlapping in a way that we define. Prior to our work, there were no known explicit constructions that were secure even against disjoint tampering (where the sets are required to be disjoint without any overlap).
\item We adapt the techniques used in the above construction to give a $t$-out-of-$n$ non-malleable secret sharing scheme (Goyal and Kumar, STOC 2018) for any $t \leq n$ in the \emph{disjoint tampering model}. This is the first general construction of a threshold non-malleable secret sharing (NMSS) scheme in the disjoint tampering model. All prior constructions had a restriction that the size of the tampered subsets could not be equal.
\item We further adapt the techniques used in the above construction to give a $t$-out-of-$n$ non-malleable secret sharing scheme (Goyal and Kumar, STOC 2018) for any $t \leq n$ in the \emph{overlapping joint tampering model}. This is the first construction of a threshold NMSS in the overlapping joint tampering model.
\item We show that a stronger notion of $s$-source non-malleable extractor that is multi-tamperable against disjoint tampering functions gives a single round network extractor protocol (Kalai et al., FOCS 2008) with attractive features. Plugging in with a new construction of multi-tamperable, 2-source non-malleable extractors provided in our work, we get a network extractor protocol for min-entropy $\Omega(n)$ that tolerates an {\it optimum} number ($t = p-2$) of faulty processors and extracts random bits for {\it every} honest processor. The prior network extractor protocols could only tolerate $t = \Omega(p)$ faulty processors and failed to extract uniform random bits for a fraction of the honest processors.
\end{itemize}

2020

CRYPTO

Guaranteed Output Delivery Comes Free in Honest Majority MPC
📺
Abstract

We study the communication complexity of unconditionally secure MPC with guaranteed output delivery over point-to-point channels for corruption threshold t < n/2, assuming the existence of a public broadcast channel. We ask the question: “is it possible to construct MPC in this setting s.t. the communication complexity per multiplication gate is linear in the number of parties?” While a number of works have focused on reducing the communication complexity in this setting, the answer to the above question has remained elusive until now. We also focus on the concrete communication complexity of evaluating each multiplication gate.
We resolve the above question in the affirmative by providing an MPC with communication complexity O(Cn\phi) bits (ignoring fixed terms which are independent of the circuit) where \phi is the length of an element in the field, C is the size of the (arithmetic) circuit, n is the number of parties. This is the first construction where the asymptotic communication complexity matches the best-known semi-honest protocol. This represents a strict improvement over the previously best-known communication complexity of O(C(n\phi + \kappa) + D_Mn^2\kappa) bits, where \kappa is the security parameter and D_M is the multiplicative depth of the circuit. Furthermore, the concrete communication complexity per multiplication gate is 5.5 field elements per party in the best case and 7.5 field elements in the worst case when one or more corrupted parties have been identified. This also roughly matches the best-known semi-honest protocol, which requires 5.5 field elements per gate.
The above also yields the first secure-with-abort MPC protocol with the same cost per multiplication gate as the best-known semi-honest protocol. Our main result is obtained by compiling the secure-with-abort MPC protocol into a fully secure one.

#### Coauthors

- Vipul Goyal (2)
- Yifan Song (1)
- Akshayaram Srinivasan (1)
- Stefano Tessaro (1)