International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Dominique Unruh

Publications

Year
Venue
Title
2021
TCC
Relationships between quantum IND-CPA notions 📺
An encryption scheme is called indistinguishable under chosen plaintext attack (short IND-CPA) if an attacker cannot distinguish the encryptions of two messages of his choice. There are other variants of this definition but they all turn out to be equivalent in the classical case. In this paper, we give a comprehensive overview of these different variants of IND-CPA for symmetric encryption schemes in the quantum setting. We investigate the relationships between these notions and prove various equivalences, implications, non-equivalences, and non-implications between these variants.
2020
PKC
Generic Authenticated Key Exchange in the Quantum Random Oracle Model 📺
We propose $$mathsf {FO_mathsf {AKE}}$$ , a generic construction of two-message authenticated key exchange (AKE) from any passively secure public key encryption (PKE) in the quantum random oracle model (QROM). Whereas previous AKE constructions relied on a Diffie-Hellman key exchange or required the underlying PKE scheme to be perfectly correct, our transformation allows arbitrary PKE schemes with non-perfect correctness. Dealing with imperfect schemes is one of the major difficulties in a setting involving active attacks. Our direct construction, when applied to schemes such as the submissions to the recent NIST post-quantum competition, is more natural than previous AKE transformations. Furthermore, we avoid the use of (quantum-secure) digital signature schemes which are considerably less efficient than their PKE counterparts. As a consequence, we can instantiate our AKE transformation with any of the submissions to the recent NIST competition, e.g., ones based on codes and lattices. $$mathsf {FO_mathsf {AKE}}$$ can be seen as a generalisation of the well known Fujisaki-Okamoto transformation (for building actively secure PKE from passively secure PKE) to the AKE setting. As a helper result, we also provide a security proof for the Fujisaki-Okamoto transformation in the QROM for PKE with non-perfect correctness which is tighter and tolerates a larger correctness error than previous proofs.
2020
ASIACRYPT
Post-Quantum Verification of Fujisaki-Okamoto 📺
Dominique Unruh
We present a computer-verified formalization of the post-quantum security proof of the Fujisaki-Okamoto transform (as analyzed by Hövelmanns, Kiltz, Schäge, and Unruh, PKC 2020). The formalization is done in quantum relational Hoare logic and checked in the qrhl-tool (Unruh, POPL 2019).
2019
CRYPTO
Quantum Security Proofs Using Semi-classical Oracles 📺
Andris Ambainis Mike Hamburg Dominique Unruh
We present an improved version of the one-way to hiding (O2H) Theorem by Unruh, J ACM 2015. Our new O2H Theorem gives higher flexibility (arbitrary joint distributions of oracles and inputs, multiple reprogrammed points) as well as tighter bounds (removing square-root factors, taking parallelism into account). The improved O2H Theorem makes use of a new variant of quantum oracles, semi-classical oracles, where queries are partially measured. The new O2H Theorem allows us to get better security bounds in several public-key encryption schemes.
2017
ASIACRYPT
2017
JOFC
2016
EUROCRYPT
2016
ASIACRYPT
2016
TCC
2015
EUROCRYPT
2014
CRYPTO
2014
EUROCRYPT
2013
CRYPTO
2013
JOFC
Polynomial Runtime and Composability
We devise a notion of polynomial runtime suitable for the simulation-based security analysis of multi-party cryptographic protocols. Somewhat surprisingly, straightforward notions of polynomial runtime lack expressivity for reactive tasks and/or lead to an unnatural simulation-based security notion. Indeed, the problem has been recognized in previous works, and several notions of polynomial runtime have already been proposed. However, our new notion, dubbed reactive polynomial time, is the first to combine the following properties: it is simple enough to support simple security/runtime analyses,it is intuitive in the sense that all intuitively feasible protocols and attacks (and only those) are considered polynomial-time,it supports secure composition of protocols in the sense of a universal composition theorem. We work in the Universal Composability (UC) protocol framework. We remark that while the UC framework already features a universal composition theorem, we develop new techniques to prove secure composition in the case of reactively polynomial-time protocols and attacks.
2012
EUROCRYPT
Quantum Proofs of Knowledge 📺
Dominique Unruh
2012
PKC
2011
CRYPTO
2011
EUROCRYPT
2010
JOFC
2010
CRYPTO
2010
EUROCRYPT
2008
EUROCRYPT
2008
ASIACRYPT
2008
ASIACRYPT
2007
CRYPTO
2007
TCC
2007
TCC
2006
EUROCRYPT
2005
TCC

Program Committees

Crypto 2021
Crypto 2020
Asiacrypt 2018
Eurocrypt 2018
Crypto 2017
Asiacrypt 2017
Eurocrypt 2016
Asiacrypt 2016
Asiacrypt 2015
Eurocrypt 2014
PKC 2014
Crypto 2012
TCC 2011