International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rahul Chatterjee

Publications

Year
Venue
Title
2022
PKC
A Note on the Post-Quantum Security of (Ring) Signatures
This work revisits the security of classical signatures and ring signatures in a quantum world. For (ordinary) signatures, we focus on the arguably preferable security notion of {\em blind-unforgeability} recently proposed by Alagic et al.\ (Eurocrypt'20). We present two {\em short} signature schemes achieving this notion: one is in the quantum random oracle model, assuming quantum hardness of SIS; and the other is in the plain model, assuming quantum hardness of LWE with super-polynomial modulus. Prior to this work, the only known blind-unforgeable schemes are Lamport's one-time signature and the Winternitz one-time signature, and both of them are in the quantum random oracle model. For ring signatures, the recent work by Chatterjee et al.\ (Crypto'21) proposes a definition trying to capture adversaries with quantum access to the signer. However, it is unclear if their definition, when restricted to the classical world, is as strong as the standard security notion for ring signatures. They also present a construction that only {\em partially} achieves (even) this seeming weak definition, in the sense that the adversary can only conduct superposition attacks over the messages, but not the rings. We propose a new definition that does not suffer from the above issue. Our definition is an analog to the blind-unforgeability in the ring signature setting. Moreover, assuming the quantum hardness of LWE, we construct a compiler converting any blind-unforgeable (ordinary) signatures to a ring signature satisfying our definition.
2021
CRYPTO
Compact Ring Signatures from Learning With Errors 📺
Ring signatures allow a user to sign a message on behalf of a ``ring'' of signers, while hiding the true identity of the signer. As the degree of anonymity guaranteed by a ring signature is directly proportional to the size of the ring, an important goal in cryptography is to study constructions that minimize the size of the signature as a function of the number of ring members. In this work, we present the first compact ring signature scheme (i.e., where the size of the signature grows logarithmically with the size of the ring) from the (plain) learning with errors (LWE) problem. The construction is in the standard model and it does not rely on a trusted setup or on the random oracle heuristic. In contrast with the prior work of Backes \etal~[EUROCRYPT'2019], our scheme does not rely on bilinear pairings, which allows us to show that the scheme is post-quantum secure assuming the quantum hardness of LWE. At the heart of our scheme is a new construction of compact and statistically witness-indistinguishable ZAP arguments for NP $\cap$ coNP, that we show to be sound based on the plain LWE assumption. Prior to our work, statistical ZAPs (for all of NP) were known to exist only assuming \emph{sub-exponential} LWE. We believe that this scheme might find further applications in the future.
2017
CRYPTO