## CryptoDB

### Michele Ciampi

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

Round-Optimal and Communication-Efficient Multiparty Computation
Abstract

Typical approaches for minimizing the round complexity of multi-party computation (MPC) come at the cost of increased communication complexity (CC) or the reliance on setup assumptions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain model with CC proportional to the depth and input-output length of the circuit being computed---we refer to such protocols as circuit scalable. This leaves open the question of obtaining communication efficient protocols that are secure against malicious adversaries in the plain model, which our work solves. Concretely, our two main contributions are:
1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-scalable maliciously secure MPC protocols in the plain model, assuming (succinct) FE combiners.
2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-independent --- i.e., with CC that depends only on the input-output length of the circuit---maliciously secure MPC protocols in the plain model, assuming Multi-Key Fully-Homomorphic Encryption (MFHE).
Our constructions are based on a new compiler that turns a wide class of MPC protocols into k-delayed-input function MPC protocols (a notion we introduce), where the functions to be computed is specified only in the k-th round of the protocol.
As immediate corollaries of our two compilers, we derive (1) the first round-optimal and circuit-scalable maliciously secure MPC, and (2) the first round-optimal and circuit-independent maliciously secure MPC in the plain model. The latter MPC achieves the best to-date CC for a round-optimal malicious MPC protocol. In fact, it is even communication-optimal when the output size of the function being evaluated is smaller than its input size (e.g., for boolean functions). All of our results are based on standard polynomial time assumptions.

2022

EUROCRYPT

Round-Optimal Multi-Party Computation with Identifiable Abort
Abstract

Secure multi-party computation (MPC) protocols that are resilient to a dishonest majority allow the adversary to get the output of the computation while, at the same time, forcing the honest parties to abort. Aumann and Lindell introduced the enhanced notion of security with identifiable abort, which still allows the adversary to trigger an abort but, at the same time, it enables the honest parties to agree on the identity of the party that led to the abort. More recently, in Eurocrypt 2016, Garg et al. showed that, assuming access to a simultaneous message exchange channel for all the parties, at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model.
Following Garg et al., a sequence of works has matched this lower bound, but none of them achieved security with identifiable abort. In this work, we close this gap and show that four rounds of communication are also sufficient to securely realize any functionality with identifiable abort using standard and generic polynomial-time assumptions. To achieve this result we introduce the new notion of bounded-rewind secure MPC that guarantees security even against an adversary that performs a mild form of reset attacks. We show how to instantiate this primitive starting from any MPC protocol and by assuming trapdoor-permutations.
The notion of bounded-rewind secure MPC allows for easier parallel composition of MPC protocols with other (interactive) cryptographic primitives. Therefore, we believe that this primitive can be useful in other contexts in which it is crucial to combine multiple primitives with MPC protocols while keeping the round complexity of the final protocol low.

2021

EUROCRYPT

Threshold Garbled Circuits and Ad Hoc Secure Computation
📺
Abstract

Garbled Circuits (GCs) represent fundamental and powerful tools in cryptography, and many variants of GCs have been considered since their introduction. An important property of the garbled circuits is that they can be evaluated securely if and only if exactly 1 key for each input wire is obtained: no less and no more. In this work we study the case when: 1) some of the wire-keys are missing, but we are still interested in computing the output of the garbled circuit and 2) the evaluator of the GC might have both keys for a constant number of wires. We start to study this question in terms of non-interactive multi-party computation (NIMPC) which is strongly connected with GCs. In this notion, there is a fixed number of parties (n) that can get correlated information from a trusted setup. Then these parties can send an encoding of their input to an evaluator, which can compute the output of the function. Similarly to the notion of ad hoc secure computation proposed by Beimel et al. [ITCS 2016], we consider the case when less than n parties participate in the online phase, and in addition we let these parties colluding with the evaluator. We refer to this notion as Threshold NIMPC.
In addition, we show that when the number of parties participating in the online phase is a fixed threshold l <= n then it is possible to securely evaluate any l-input function. We build our result on top of a new secret-sharing scheme (which can be of independent interest) and on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto 2017]. Our protocol can be used to compute any function in NC1 in the information-theoretic setting and any function in P assuming one-way functions.
As a second (and main) contribution, we consider a slightly different notion of security in which the number of parties that can participate in the online phase is not specified, and can be any number c above the threshold l (in this case the evaluator cannot collude with the other parties). We solve an open question left open by Beimel, Ishai and Kushilevitz [Eurocrypt 2017] showing how to build a secure protocol for the case when c is constant, under the Learning with Errors assumption.

2021

PKC

Multi-Client Functional Encryption for Separable Functions
📺
Abstract

In this work, we provide a compiler that transforms a single-input functional encryption scheme for the class of polynomially bounded circuits
into a multi-client functional encryption (MCFE) scheme for the class of separable functions. An $n$-input function $f$ is called separable if it can be described as a list of polynomially bounded circuits $f^1,..., f^n$ s.t. $f(x_1,..., x_n)= f^1(x_1)+ ... + f^n(x_n)$ for all $x_1,..., x_n$.
Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption (MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE but for the less generic class of separable functions. Prior to our work, a long line of results has been proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable function.
We also propose a modified version of the notion of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at most $n$ different entities, which will return decryption shares that can be combined (e.g., additively) thus obtaining the output of the computation. This notion is especially useful in the case of a very resource consuming decryption procedure, while the combine algorithm is non-time consuming. We also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same functionality class.

2021

TCC

Oblivious Transfer from Trapdoor Permutations in Minimal Rounds
📺
Abstract

Oblivious transfer (OT) is a foundational primitive within cryptography owing to its connection with secure computation. One of the oldest constructions of oblivious transfer was from certified trapdoor permutations (TDPs). However several decades later, we do not know if a similar construction can be obtained from TDPs in general.
In this work, we study the problem of constructing round optimal oblivious transfer from trapdoor permutations. In particular, we obtain the following new results (in the plain model) relying on TDPs in a black-box manner:
– Three-round oblivious transfer protocol that guarantees indistinguishability-security against malicious senders (and semi-honest receivers).
– Four-round oblivious transfer protocol secure against malicious adversaries with black-box simulation-based security.
By combining our second result with an already known compiler we obtain the first round-optimal 2-party computation protocol that relies in a black-box way on TDPs.
A key technical tool underlying our results is a new primitive we call dual witness encryption (DWE) that may be of independent interest.

2020

TCC

Round Optimal Secure Multiparty Computation from Minimal Assumptions
📺
Abstract

We construct a four round secure multiparty computation (MPC) protocol in the plain model that achieves security against any dishonest majority. The security of our protocol relies only on the existence of four round oblivious transfer. This culminates the long line of research on constructing round-efficient MPC from minimal assumptions (at least w.r.t. black-box simulation).

#### Program Committees

- Eurocrypt 2022
- PKC 2021

#### Coauthors

- Arka Rai Choudhuri (2)
- Vipul Goyal (3)
- Abhishek Jain (2)
- Rafail Ostrovsky (8)
- Giuseppe Persiano (3)
- Divya Ravi (1)
- Alessandra Scafuro (2)
- Luisa Siniscalchi (9)
- Ivan Visconti (7)
- Hendrik Waldner (3)
- Vassilis Zikas (1)