## CryptoDB

### Giulio Malavolta

#### Publications

**Year**

**Venue**

**Title**

2022

PKC

A Note on the Post-Quantum Security of (Ring) Signatures
Abstract

This work revisits the security of classical signatures and ring signatures in a quantum world. For (ordinary) signatures, we focus on the arguably preferable security notion of {\em blind-unforgeability} recently proposed by Alagic et al.\ (Eurocrypt'20). We present two {\em short} signature schemes achieving this notion: one is in the quantum random oracle model, assuming quantum hardness of SIS; and the other is in the plain model, assuming quantum hardness of LWE with super-polynomial modulus. Prior to this work, the only known blind-unforgeable schemes are Lamport's one-time signature and the Winternitz one-time signature, and both of them are in the quantum random oracle model.
For ring signatures, the recent work by Chatterjee et al.\ (Crypto'21) proposes a definition trying to capture adversaries with quantum access to the signer. However, it is unclear if their definition, when restricted to the classical world, is as strong as the standard security notion for ring signatures. They also present a construction that only {\em partially} achieves (even) this seeming weak definition, in the sense that the adversary can only conduct superposition attacks over the messages, but not the rings. We propose a new definition that does not suffer from the above issue. Our definition is an analog to the blind-unforgeability in the ring signature setting. Moreover, assuming the quantum hardness of LWE, we construct a compiler converting any blind-unforgeable (ordinary) signatures to a ring signature satisfying our definition.

2021

EUROCRYPT

Post-Quantum Multi-Party Computation
📺
Abstract

We initiate the study of multi-party computation for classical functionalities in the plain model, with security against malicious quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of *constant-round* post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and quantum polynomial hardness of an LWE-based circular security assumption.
Along the way, we develop the following cryptographic primitives that may be of independent interest:
1.) A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of (a circular variant of) the LWE problem. This immediately yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys.
2.) A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.
To prove the security of our protocol, we develop a new straight-line non-black-box simulation technique against parallel sessions that does not clone the adversary's state. This technique may also be relevant to the classical setting.

2021

EUROCRYPT

Unbounded Multi-Party Computation from Learning with Errors
📺
Abstract

We consider the problem of round-optimal *unbounded MPC*: in the first round, parties publish a message that depends only on their input. In the second round, any subset of parties can jointly and securely compute any function $f$ over their inputs in a single round of broadcast. We do not impose any a priori bound on the number of parties nor on the size of the functions that can be computed.
Our main result is a semi-honest two-round protocol for unbounded MPC in the plain model from the hardness of the standard learning with errors (LWE) problem. Prior work in the same setting assumes the hardness of problems over bilinear maps. Thus, our protocol is the first example of unbounded MPC that is post-quantum secure.
The central ingredient of our protocol is a new scheme of attribute-based secure function evaluation (AB-SFE) with *public decryption*. Our construction combines techniques from the realm of homomorphic commitments with delegation of lattice basis. We believe that such a scheme may find further applications in the future.

2021

PKC

A Geometric Approach to Homomorphic Secret Sharing
📺
Abstract

An (n,m,t)-homomorphic secret sharing (HSS) scheme allows n clients to share their inputs across m servers, such that the inputs are hidden from any t colluding servers, and moreover the servers can evaluate functions over the inputs locally by mapping their input shares to compact output shares. Such compactness makes HSS a useful building block for communication-efficient secure multi-party computation (MPC).
In this work, we propose a simple compiler for HSS evaluating multivariate polynomials based on two building blocks: (1) homomorphic encryption for linear functions or low-degree polynomials, and (2) information-theoretic HSS for low-degree polynomials. Our compiler leverages the power of the first building block towards improving the parameters of the second.
We use our compiler to generalize and improve on the HSS scheme of Lai, Malavolta, and Schröder [ASIACRYPT'18], which is only efficient when the number of servers is at most logarithmic in the security parameter. In contrast, we obtain efficient schemes for polynomials of higher degrees and an arbitrary number of servers. This application of our general compiler extends techniques that were developed in the context of information-theoretic private information retrieval (Woodruff and Yekhanin [CCC'05]), which use partial derivatives and Hermite interpolation to support the computation of polynomials of higher degrees.
In addition to the above, we propose a new application of HSS to MPC with preprocessing. By pushing the computation of some HSS servers to a preprocessing phase, we obtain communication-efficient MPC protocols for low-degree polynomials that use fewer parties than previous protocols based on the same assumptions. The online communication of these protocols is linear in the input size, independently of the description size of the polynomial.

2021

CRYPTO

Compact Ring Signatures from Learning With Errors
📺
Abstract

Ring signatures allow a user to sign a message on behalf of a ``ring'' of signers, while hiding the true identity of the signer. As the degree of anonymity guaranteed by a ring signature is directly proportional to the size of the ring, an important goal in cryptography is to study constructions that minimize the size of the signature as a function of the number of ring members.
In this work, we present the first compact ring signature scheme (i.e., where the size of the signature grows logarithmically with the size of the ring) from the (plain) learning with errors (LWE) problem. The construction is in the standard model and it does not rely on a trusted setup or on the random oracle heuristic. In contrast with the prior work of Backes
\etal~[EUROCRYPT'2019], our scheme does not rely on bilinear pairings, which allows us to show that the scheme is post-quantum secure assuming the quantum hardness of LWE.
At the heart of our scheme is a new construction of compact and statistically witness-indistinguishable ZAP arguments for NP $\cap$ coNP, that we show to be sound based on the plain LWE assumption. Prior to our work, statistical ZAPs (for all of NP) were known to exist only assuming \emph{sub-exponential} LWE. We believe that this scheme might find further applications in the future.

2021

ASIACRYPT

How to Build a Trapdoor Function from an Encryption Scheme
📺
Abstract

In this work we ask the following question: Can we transform any encryption scheme into a trapdoor function (TDF)? Alternatively stated, can we make any encryption scheme randomness recoverable? We propose a generic compiler that takes as input any encryption scheme with pseudorandom ciphertexts and adds a trapdoor to invert the encryption, recovering also the random coins. This universal TDFier only assumes in addition the existence of a hinting pseudorandom generator (PRG). Despite the simplicity, our transformation is quite general and we establish a series of new feasibility results:
- The first identity-based TDF [Bellare et al. EUROCRYPT 2012] from the CDH assumption in pairing-free groups (or from factoring), thus matching the state of the art for identity-based encryption schemes. Prior works required pairings or LWE.
- The first collusion-resistant attribute-based TDF (AB-TDF) for all ($NC^1$, resp.) circuits from LWE (bilinear maps, resp.). Moreover, the first single-key AB-TDF from CDH. To the best of our knowledge, no AB-TDF was known in the literature (not even for a single key) from any assumption. We obtain the same results for predicate encryption.
As an additional contribution, we define and construct a trapdoor garbling scheme: A simulation secure garbling scheme with a hidden ``trigger'' that allows the evaluator to fully recover the randomness used by the garbling algorithm. We show how to construct trapdoor garbling from the DDH or LWE assumption with an interplay of key-dependent message (KDM) and randomness-dependent message (RDM) techniques.
Trapdoor garbling allows us to obtain alternative constructions of (single-key) AB-TDFs with additional desirable properties, such as adaptive security (in the choice of the attribute) and projective keys. We expect trapdoor garbling to be useful in other contexts, e.g. in case where, upon successful execution, the evaluator needs to immediately verify that the garbled circuit was well-formed.

2021

TCC

Two-Round Maliciously Secure Computation with Super-Polynomial Simulation
📺
Abstract

We propose the first maliciously secure multi-party computation (MPC) protocol for general functionalities in two rounds, without any trusted setup. Since polynomial-time simulation is impossible in two rounds, we achieve the relaxed notion of superpolynomial-time simulation security [Pass, EUROCRYPT 2003]. Prior to our work, no such maliciously secure protocols were known even in the two-party setting for functionalities where both parties receive outputs. Our protocol is based on the sub-exponential security of standard assumptions plus a special type of non-interactive non-malleable commitment.
At the heart of our approach is a two-round multi-party conditional disclosure of secrets (MCDS) protocol in the plain model from bilinear maps, which is constructed from techniques introduced in [Benhamouda and Lin, TCC 2020].

2021

TCC

The Round Complexity of Quantum Zero-Knowledge
📺
Abstract

We study the round complexity of zero-knowledge for QMA (the quantum analogue of NP). Assuming the quantum quasi-polynomial hardness of the learning with errors (LWE) problem, we obtain the following results:
- 2-Round statistical witness indistinguishable (WI) arguments for QMA.
- 4-Round statistical zero-knowledge arguments for QMA in the plain model, additionally assuming the existence of quantum fully homomorphic encryption. This is the first protocol for constant-round statistical zero-knowledge arguments for QMA.
- 2-Round computational (statistical, resp.) zero-knowledge for QMA in the timing model, additionally assuming the existence of post-quantum non-parallelizing functions (time-lock puzzles, resp.).
All of these protocols match the best round complexity known for the corresponding protocols for NP with post-quantum security. Along the way, we introduce and construct the notions of sometimes-extractable oblivious transfer and sometimes-simulatable zero-knowledge, which might be of independent interest.

2021

TCC

Rate-1 Quantum Fully Homomorphic Encryption
📺
Abstract

Secure function evaluation (SFE) allows Alice to publish an encrypted version of her input m such that Bob (holding a circuit C) can send a single message that reveals C(m) to Alice, and nothing more. Security is required to hold against malicious parties, that may behave arbitrarily. In this work we study the notion of SFE in the quantum setting, where Alice outputs an encrypted quantum state |\psi> and learns C(|\psi>) after receiving Bob's message.
We show that, assuming the quantum hardness of the learning with errors problem (LWE), there exists an SFE protocol for quantum computation with communication complexity (||\psi>|+|C(|\psi>)|)(1+o(1)), which is nearly optimal. This result is obtained by two main technical steps, which might be of independent interest. Specifically, we show (i) a construction of a rate-1 quantum fully-homomorphic encryption and (ii) a generic transformation to achieve malicious circuit privacy in the quantum setting.

2020

EUROCRYPT

Candidate iO From Homomorphic Encryption Schemes
📺
Abstract

We propose a new approach to construct general-purpose indistinguishability obfuscation (iO). Our construction is obtained via a new intermediate primitive that we call split fully-homomorphic encryption (split FHE), which we show to be sufficient for constructing iO. Specifically, split FHE is FHE where decryption takes the following two-step syntactic form: (i) A secret decryption step uses the secret key and produces a hint which is (asymptotically) shorter than the length of the encrypted message, and (ii) a public decryption step that only requires the ciphertext and the previously generated hint (and not the entire secret key), and recovers the encrypted message. In terms of security, the hints for a set of ciphertexts should not allow one to violate semantic security for any other ciphertexts.
Next, we show a generic candidate construction of split FHE based on three building blocks: (i) A standard FHE scheme with linear decrypt-and-multiply (which can be instantiated with essentially all LWE-based constructions), (ii) a linearly homomorphic encryption scheme with short decryption hints (such as the Damgard-Jurik encryption scheme, based on the DCR problem), and (iii) a cryptographic hash function (which can be based on a variety of standard assumptions). Our approach is heuristic in the sense that our construction is not provably secure and makes implicit assumptions about the interplay between these underlying primitives. We show evidence that this construction is secure by providing an argument in an appropriately defined oracle model.
We view our construction as a big departure from the state-of-the-art constructions, and it is in fact quite simple.

2020

EUROCRYPT

Statistical Zaps and New Oblivious Transfer Protocols
📺
Abstract

We study the problem of achieving statistical privacy in interactive proof systems and oblivious transfer -- two of the most well studied two-party protocols -- when limited rounds of interaction are available.
-- Statistical Zaps: We give the first construction of statistical Zaps, namely, two-round statistical witness-indistinguishable (WI) protocols with a public-coin verifier. Our construction achieves computational soundness based on the quasi-polynomial hardness of learning with errors assumption.
-- Three-Round Statistical Receiver-Private Oblivious Transfer: We give the first construction of a three-round oblivious transfer (OT) protocol -- in the plain model -- that achieves statistical privacy for receivers and computational privacy for senders against malicious adversaries, based on polynomial-time assumptions. The round-complexity of our protocol is optimal.
We obtain our first result by devising a public-coin approach to compress sigma protocols, without relying on trusted setup. To obtain our second result, we devise a general framework via a new notion of statistical hash commitments that may be of independent interest.

2020

TCC

Constant Ciphertext-Rate Non-Committing Encryption from Standard Assumptions
📺
Abstract

Non-committing encryption (NCE) is a type of public key encryption which comes with the ability to equivocate ciphertexts to encryptions of arbitrary messages, i.e., it allows one to find coins for key generation and encryption which ``explain'' a given ciphertext as an encryption of any message. NCE is the cornerstone to construct adaptively secure multiparty computation [Canetti et al. STOC'96] and can be seen as the quintessential notion of security for public key encryption to realize ideal communication channels.
A large body of literature investigates what is the best message-to-ciphertext ratio (i.e., the rate) that one can hope to achieve for NCE. In this work we propose a near complete resolution to this question and we show how to construct NCE with constant rate in the plain model from a variety of assumptions, such as the hardness of the learning with errors (LWE), the decisional Diffie-Hellman (DDH), or the quadratic residuosity (QR) problem. Prior to our work, constructing NCE with constant rate required a trusted setup and indistinguishability obfuscation [Canetti et al. ASIACRYPT'17].

2020

TCC

Multi-key Fully-Homomorphic Encryption in the Plain Model
📺
Abstract

The notion of multi-key fully homomorphic encryption (multi-key FHE) [Lopez-Alt, Tromer, Vaikuntanathan, STOC'12] was proposed as a generalization of fully homomorphic encryption to the multiparty setting. In a multi-key FHE scheme for $n$ parties, each party can individually choose a key pair and use it to encrypt its own private input. Given n ciphertexts computed in this manner, the parties can homomorphically evaluate a circuit C over them to obtain a new ciphertext containing the output of C, which can then be decrypted via a decryption protocol. The key efficiency property is that the size of the (evaluated) ciphertext is independent of the size of the circuit.
Multi-key FHE with one-round decryption [Mukherjee and Wichs, Eurocrypt'16], has found several powerful applications in cryptography over the past few years. However, an important drawback of all such known schemes is that they require a trusted setup.
In this work, we address the problem of constructing multi-key FHE in the plain model. We obtain the following results:
- A multi-key FHE scheme with one-round decryption based on the hardness of learning with errors (LWE), ring LWE, and decisional small polynomial ratio (DSPR) problems.
- A variant of multi-key FHE where we relax the decryption algorithm to be non-compact -- i.e., where the decryption complexity can depend on the size of C -- based on the hardness of LWE. We call this variant multi-homomorphic encryption (MHE). We observe that MHE is already sufficient for some of the applications of multi-key FHE.

2020

ASIACRYPT

A Combinatorial Approach to Quantum Random Functions
📺
Abstract

Quantum pseudorandom functions (QPRFs) extend the classical security of a PRF by allowing the adversary to issue queries on input superpositions. Zhandry [Zhandry, FOCS 2012] showed a separation between the two notions and proved that common construction paradigms are also quantum secure, albeit with a new ad-hoc analysis. In this work, we revisit the question of constructing QPRFs and propose a new method starting from small-domain (classical) PRFs: At the heart of our approach is a new domain-extension technique based on bipartite expanders. Interestingly, our analysis is almost entirely classical.
As a corollary of our main theorem, we obtain the first (approximate) key-homomorphic quantum PRF based on the quantum intractability of the learning with errors problem.

2020

ASIACRYPT

Multi-Client Oblivious RAM with Poly-Logarithmic Communication
📺
Abstract

Oblivious RAM enables oblivious access to memory in the single-client setting, which may not be the best fit in the network setting. Multi-client oblivious RAM (MCORAM) considers a collaborative but untrusted environment, where a database owner selectively grants read access and write access to different entries of a confidential database to multiple clients. Their access pattern must remain oblivious not only to the server but also to fellow clients. This upgrade rules out many techniques for constructing ORAM, forcing us to pursue new techniques.
MCORAM not only provides an alternative solution to private anonymous data access (Eurocrypt 2019) but also serves as a promising building block for equipping oblivious file systems with access control and extending other advanced cryptosystems to the multi-client setting.
Despite being a powerful object, the current state-of-the-art is unsatisfactory: The only existing scheme requires $O(\sqrt n)$ communication and client computation for a database of size $n$. Whether it is possible to reduce these complexities to $\mathsf{polylog}(n)$, thereby matching the upper bounds for ORAM, is an open problem, i.e., can we enjoy access control and client-obliviousness under the same bounds?
Our first result answers the above question affirmatively by giving a construction from fully homomorphic encryption (FHE). Our main technical innovation is a new technique for cross-key trial evaluation of ciphertexts.
We also consider the same question in the setting with $N$ non-colluding servers, out of which at most $t$ of them can be corrupt. We build multi-server MCORAM from distributed point functions (DPF), and propose new constructions of DPF via a virtualization technique with bootstrapping, assuming the existence of homomorphic secret sharing and pseudorandom generators in NC0, which are not known to imply FHE.

2019

PKC

Efficient Invisible and Unlinkable Sanitizable Signatures
Abstract

Sanitizable signatures allow designated parties (the sanitizers) to apply arbitrary modifications to some restricted parts of signed messages. A secure scheme should not only be unforgeable, but also protect privacy and hold both the signer and the sanitizer accountable. Two important security properties that are seemingly difficult to achieve simultaneously and efficiently are invisibility and unlinkability. While invisibility ensures that the admissible modifications are hidden from external parties, unlinkability says that sanitized signatures cannot be linked to their sources. Achieving both properties simultaneously is crucial for applications where sensitive personal data is signed with respect to data-dependent admissible modifications. The existence of an efficient construction achieving both properties was recently posed as an open question by Camenisch et al. (PKC’17). In this work, we propose a solution to this problem with a two-step construction. First, we construct (non-accountable) invisible and unlinkable sanitizable signatures from signatures on equivalence classes and other basic primitives. Second, we put forth a generic transformation using verifiable ring signatures to turn any non-accountable sanitizable signature into an accountable one while preserving all other properties. When instantiating in the generic group and random oracle model, the efficiency of our construction is comparable to that of prior constructions, while providing stronger security guarantees.

2019

EUROCRYPT

Incremental Proofs of Sequential Work
📺
Abstract

A proof of sequential work allows a prover to convince a verifier that a certain amount of sequential steps have been computed. In this work we introduce the notion of incremental proofs of sequential work where a prover can carry on the computation done by the previous prover incrementally, without affecting the resources of the individual provers or the size of the proofs.To date, the most efficient instance of proofs of sequential work [Cohen and Pietrzak, Eurocrypt 2018] for N steps require the prover to have $$\sqrt{N}$$N memory and to run for $$N + \sqrt{N}$$N+N steps. Using incremental proofs of sequential work we can bring down the prover’s storage complexity to $$\log N$$logN and its running time to N.We propose two different constructions of incremental proofs of sequential work: Our first scheme requires a single processor and introduces a poly-logarithmic factor in the proof size when compared with the proposals of Cohen and Pietrzak. Our second scheme assumes $$\log N$$logN parallel processors but brings down the overhead of the proof size to a factor of 9. Both schemes are simple to implement and only rely on hash functions (modelled as random oracles).

2019

CRYPTO

Subvector Commitments with Application to Succinct Arguments
📺
Abstract

We put forward the notion of subvector commitments (SVC): An SVC allows one to open a committed vector at a set of positions, where the opening size is independent of length of the committed vector and the number of positions to be opened. We propose two constructions under variants of the root assumption and the CDH assumption, respectively. We further generalize SVC to a notion called linear map commitments (LMC), which allows one to open a committed vector to its images under linear maps with a single short message, and propose a construction over pairing groups.Equipped with these newly developed tools, we revisit the “CS proofs” paradigm [Micali, FOCS 1994] which turns any arguments with public-coin verifiers into non-interactive arguments using the Fiat-Shamir transform in the random oracle model. We propose a compiler that turns any (linear, resp.) PCP into a non-interactive argument, using exclusively SVCs (LMCs, resp.). For an approximate 80 bits of soundness, we highlight the following new implications:1.There exists a succinct non-interactive argument of knowledge (SNARK) with public-coin setup with proofs of size 5360 bits, under the adaptive root assumption over class groups of imaginary quadratic orders against adversaries with runtime $$2^{128}$$. At the time of writing, this is the shortest SNARK with public-coin setup.2.There exists a non-interactive argument with private-coin setup, where proofs consist of 2 group elements and 3 field elements, in the generic bilinear group model.

2019

CRYPTO

Homomorphic Time-Lock Puzzles and Applications
📺
Abstract

Time-lock puzzles allow one to encrypt messages for the future, by efficiently generating a puzzle with a solution s that remains hidden until time $$\mathcal {T}$$ has elapsed. The solution is required to be concealed from the eyes of any algorithm running in (parallel) time less than $$\mathcal {T}$$. We put forth the concept of homomorphic time-lock puzzles, where one can evaluate functions over puzzles without solving them, i.e., one can manipulate a set of puzzles with solutions $$(s_1, \dots , s_n)$$ to obtain a puzzle that solves to $$f(s_1, \ldots , s_n)$$, for any function f. We propose candidate constructions under concrete cryptographic assumptions for different classes of functions. Then we show how homomorphic time-lock puzzles overcome the limitations of classical time-lock puzzles by proposing new protocols for applications of interest, such as e-voting, multi-party coin flipping, and fair contract signing.

2019

CRYPTO

Trapdoor Hash Functions and Their Applications
📺
Abstract

We introduce a new primitive, called trapdoor hash functions (TDH), which are hash functions $$\mathsf {H}: \{0,1\}^n \rightarrow \{0,1\}^\lambda $$ with additional trapdoor function-like properties. Specifically, given an index $$i\in [n]$$, TDHs allow for sampling an encoding key $$\mathsf {ek}$$ (that hides i) along with a corresponding trapdoor. Furthermore, given $$\mathsf {H}(x)$$, a hint value $$\mathsf {E}(\mathsf {ek},x)$$, and the trapdoor corresponding to $$\mathsf {ek}$$, the $$i^{th}$$ bit of x can be efficiently recovered. In this setting, one of our main questions is: How small can the hint value $$\mathsf {E}(\mathsf {ek},x)$$ be? We obtain constructions where the hint is only one bit long based on DDH, QR, DCR, or LWE.This primitive opens a floodgate of applications for low-communication secure computation. We mainly focus on two-message protocols between a receiver and a sender, with private inputs x and y, resp., where the receiver should learn f(x, y). We wish to optimize the (download) rate of such protocols, namely the asymptotic ratio between the size of the output and the sender’s message. Using TDHs, we obtain:1.The first protocols for (two-message) rate-1 string OT based on DDH, QR, or LWE. This has several useful consequences, such as:(a)The first constructions of PIR with communication cost poly-logarithmic in the database size based on DDH or QR. These protocols are in fact rate-1 when considering block PIR.(b)The first constructions of a semi-compact homomorphic encryption scheme for branching programs, where the encrypted output grows only with the program length, based on DDH or QR.(c)The first constructions of lossy trapdoor functions with input to output ratio approaching 1 based on DDH, QR or LWE.(d)The first constant-rate LWE-based construction of a 2-message “statistically sender-private” OT protocol in the plain model.2.The first rate-1 protocols (under any assumption) for n parallel OTs and matrix-vector products from DDH, QR or LWE.
We further consider the setting where f evaluates a RAM program y with running time $$T\ll |x|$$ on x. We obtain the first protocols with communication sublinear in the size of x, namely $$T\cdot \sqrt{|x|}$$ or $$T\cdot \root 3 \of {|x|}$$, based on DDH or, resp., pairings (and correlated-input secure hash functions).

2019

TCC

Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles
Abstract

We show how to combine a fully-homomorphic encryption scheme with linear decryption and a linearly-homomorphic encryption schemes to obtain constructions with new properties. Specifically, we present the following new results.
(1)Rate-1 Fully-Homomorphic Encryption: We construct the first scheme with message-to-ciphertext length ratio (i.e., rate) $$1-\sigma $$ for $$\sigma = o(1)$$. Our scheme is based on the hardness of the Learning with Errors (LWE) problem and $$\sigma $$ is proportional to the noise-to-modulus ratio of the assumption. Our building block is a construction of a new high-rate linearly-homomorphic encryption.One application of this result is the first general-purpose secure function evaluation protocol in the preprocessing model where the communication complexity is within additive factor of the optimal insecure protocol.(2)Fully-Homomorphic Time-Lock Puzzles: We construct the first time-lock puzzle where one can evaluate any function over a set of puzzles without solving them, from standard assumptions. Prior work required the existence of sub-exponentially hard indistinguishability obfuscation.

2019

ASIACRYPT

Rate-1 Trapdoor Functions from the Diffie-Hellman Problem
Abstract

Trapdoor functions (TDFs) are one of the fundamental building blocks in cryptography. Studying the underlying assumptions and the efficiency of the resulting instantiations is therefore of both theoretical and practical interest. In this work we improve the input-to-image rate of TDFs based on the Diffie-Hellman problem. Specifically, we present: (a)A rate-1 TDF from the computational Diffie-Hellman (CDH) assumption, improving the result of Garg, Gay, and Hajiabadi [EUROCRYPT 2019], which achieved linear-size outputs but with large constants. Our techniques combine non-binary alphabets and high-rate error-correcting codes over large fields.(b)A rate-1 deterministic public-key encryption satisfying block-source security from the decisional Diffie-Hellman (DDH) assumption. While this question was recently settled by Döttling et al. [CRYPTO 2019], our scheme is conceptually simpler and concretely more efficient. We demonstrate this fact by implementing our construction.

2018

ASIACRYPT

Homomorphic Secret Sharing for Low Degree Polynomials
Abstract

Homomorphic secret sharing (HSS) allows n clients to secret-share data to m servers, who can then homomorphically evaluate public functions over the shares. A natural application is outsourced computation over private data. In this work, we present the first plain-model homomorphic secret sharing scheme that supports the evaluation of polynomials with degree higher than 2. Our construction relies on any degree-k (multi-key) homomorphic encryption scheme and can evaluate degree-$$\left( (k+1)m -1 \right) $$ polynomials, for any polynomial number of inputs n and any sub-logarithmic (in the security parameter) number of servers m. At the heart of our work is a series of combinatorial arguments on how a polynomial can be split into several low-degree polynomials over the shares of the inputs, which we believe is of independent interest.

#### Coauthors

- Amit Agarwal (2)
- Prabhanjan Ananth (2)
- James Bartusek (2)
- Zvika Brakerski (3)
- Pedro Branco (1)
- Xavier Bultel (1)
- Orestis Chardouvelis (2)
- Rahul Chatterjee (2)
- Sherman S. M. Chow (1)
- Kai-Min Chung (1)
- Nico Döttling (8)
- Katharina Fech (1)
- Nils Fleischhacker (1)
- Sanjam Garg (7)
- Vipul Goyal (3)
- Mohammad Hajiabadi (3)
- Yuval Ishai (2)
- Abhishek Jain (3)
- Zhengzhong Jin (3)
- Dakshita Khurana (3)
- Johannes Krupp (1)
- Pascal Lafourcade (1)
- Russell W. F. Lai (6)
- Xiaohui Liang (2)
- Kevin Liu (1)
- Tamer Mour (1)
- Rafail Ostrovsky (2)
- Omkant Pandey (1)
- Sihang Pu (1)
- Jonas Schneider (1)
- Dominique Schröder (4)
- Sina Shiehian (1)
- Mark Simkin (1)
- Sri Aravinda Krishnan Thyagarajan (2)