Paper 2017/997
Hash Proof Systems over Lattices Revisited
Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach
Abstract
Hash Proof Systems or Smooth Projective Hash Functions (SPHFs) are a form of implicit arguments introduced by Cramer and Shoup at Eurocrypt'02. They have found many applications since then, in particular for authenticated key exchange or honest-verifier zero-knowledge proofs. While they are relatively well understood in group settings, they seem painful to construct directly in the lattice setting.
Only one construction of an SPHF over lattices has been proposed in the standard model, by Katz and Vaikuntanathan at Asiacrypt'09. But this construction has an important drawback: it only works for an ad-hoc language of ciphertexts. Concretely, the corresponding decryption procedure needs to be tweaked, now requiring
Metadata
- Available format(s)
-
PDF
- Category
- Public-key cryptography
- Publication info
- Preprint. MINOR revision.
- Keywords
- Hash Proof SystemsSPHFLatticesLearning With ErrorsHarmonic Analysis
- Contact author(s)
- fabrice benhamouda @ normalesup org
- History
- 2017-10-11: received
- Short URL
- https://ia.cr/2017/997
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2017/997, author = {Fabrice Benhamouda and Olivier Blazy and Léo Ducas and Willy Quach}, title = {Hash Proof Systems over Lattices Revisited}, howpublished = {Cryptology {ePrint} Archive, Paper 2017/997}, year = {2017}, url = {https://eprint.iacr.org/2017/997} }